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Climate change is causing arctic regions to warm disproportionally faster than

those at lower latitudes, leading to alterations in carbon and nitrogen cycling, and

potentially higher greenhouse gas emissions. It is thus increasingly important to better

characterize the microorganisms driving arctic biogeochemical processes and their

potential responses to changing conditions. Here, we describe a novel thaumarchaeon

enriched from an arctic soil, Candidatus Nitrosocosmicus arcticus strain Kfb, which has

been maintained for seven years in stable laboratory enrichment cultures as an aerobic

ammonia oxidizer, with ammonium or urea as substrates. Genomic analyses show that

this organism harbors all genes involved in ammonia oxidation and in carbon fixation

via the 3-hydroxypropionate/4-hydroxybutyrate cycle, characteristic of all AOA, as well

as the capability for urea utilization and potentially also for heterotrophic metabolism,

similar to other AOA. Ca. N. arcticus oxidizes ammonia optimally between 20 and

28◦C, well above average temperatures in its native high arctic environment (−13–

4◦C). Ammonia oxidation rates were nevertheless much lower than those of most

cultivated mesophilic AOA (20–45◦C). Intriguingly, we repeatedly observed apparent

faster growth rates (based on marker gene counts) at lower temperatures (4–8◦C) but

without detectable nitrite production. Together with potential metabolisms predicted

from its genome content, these observations indicate that Ca. N. arcticus is not

a strict chemolithotrophic ammonia oxidizer and add to cumulating evidence for a

greater metabolic and physiological versatility of AOA. The physiology of Ca. N. arcticus

suggests that increasing temperatures might drastically affect nitrification in arctic soils

by stimulating archaeal ammonia oxidation.
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INTRODUCTION

High latitude ecosystems are warming faster than those at lower
latitudes and soils in these regions are expected to exhibit higher
respiration rates and overall turnover of carbon and nitrogen
under rising temperatures (IPCC, 2013). Arctic and boreal
soils store particularly large amounts of organic matter, and
considerable carbon losses as carbon dioxide (CO2) emissions
have been observed in these ecosystems under a temperature
increase of just 1◦C (Crowther et al., 2016). Such climate
feedbacks are expected to increase greatly due to permafrost
thawing, higher rates of soil organic matter decomposition
and consequent higher nutrient bioavailability (particularly of
nitrogen), eventually leading to higher greenhouse gas emissions,
including CO2, methane, and nitrous oxide (N2O) (e.g.,
Dorrepaal et al., 2009; Wild et al., 2014; Capek et al., 2015; Voigt
et al., 2017). It is therefore of major importance for future climate
projections to better characterize microorganisms that drive
biogeochemical processes underlying nutrient and greenhouse
gas fluxes in arctic soil ecosystems, such as nitrification, the
conversion of ammonia via nitrite to nitrate. Ammonia-oxidizing
archaea (AOA) are widespread and abundant in arctic soils,
where they generally outnumber ammonia-oxidizing bacteria
(AOB) (Siciliano et al., 2009; Lamb et al., 2011; Banerjee and
Siciliano, 2012; Daebeler et al., 2012; Alves et al., 2013) and are
likely the main drivers of nitrification, at least in some soils
(Alves et al., 2013). Together, these observations indicate that
AOA play a central role in nitrogen cycling in these nitrogen-
limited and particularly sensitive ecosystems. AOA represent the
taxonomic class Nitrososphaeria of the phylum Thaumarchaeota
and are globally distributed in aquatic and terrestrial ecosystems
(Brochier-Armanet et al., 2008; Stieglmeier et al., 2014a; Alves
et al., 2018). AOA are typically the dominant and often the
only detectable ammonia oxidizers in extreme and oligotrophic
environments (Hatzenpichler, 2012; Stahl and de la Torre,
2012; Alves et al., 2018), although they are also abundant in
highly organic and nutrient-rich environments, such as fertilized
soils, peatlands and wastewater treatment systems (Stopnisek
et al., 2010; Limpiyakorn et al., 2013; Sauder et al., 2017;
Alves et al., 2018).

Although all cultivated AOA strains grow
chemolithoautotrophically through oxidation of ammonia,
several studies have suggested that growth of at least some
AOA predominant in soils and freshwater might not depend
solely, or primarily, on ammonia oxidation (see for example Jia
and Conrad, 2009; Xu et al., 2012; Alves et al., 2018; Nelkner
et al., 2019 for overview). Incorporation of carbon from organic
substrates into AOA cells has also been reported in ocean
waters (Ouverney and Fuhrman, 2000; Ingalls et al., 2006;
Hansman et al., 2009), and other studies were unable to detect
autotrophic carbon assimilation in populations actively growing
in wastewater treatment plants (Mussmann et al., 2011; Sauder
et al., 2017). Additionally, a recent meta-analysis revealed that
the two clades of AOA most frequently detected in terrestrial
environments lack cultivated representatives and have never
been detected in active autotrophic nitrifying communities based
on 13CO2 stable isotope probing (Alves et al., 2018). Together,

these observations strongly indicate that at least some lineages
of AOA may rely on alternative or complementary and yet
unknown carbon assimilation pathways, and that their metabolic
spectrum is broader than currently assumed.

Here, we describe the cultivation and genome properties of
an ammonia-oxidizing thaumarchaeote enriched from a mineral
arctic soil from Svalbard, Candidatus Nitrosocosmicus arcticus
strain Kfb, affiliated with the candidate genus Nitrosocosmicus,
which represent the recently defined amoA gene clade NS-ζ
(Alves et al., 2018), formerly referred to as Nitrososphaera-
sister clade (Pester et al., 2012). Three ammonia-oxidizing Ca.
Nitrosocosmicus strains have been enriched earlier from different
environments, namely Ca. Nitrosocosmicus franklandus C13
from an agricultural soil (Lehtovirta-Morley et al., 2016),
Ca. Nitrosocosmicus oleophilus MY3 (Jung et al., 2016)
from hydrocarbon-contaminated terrestrial sediments and Ca.
Nitrosocosmicus exaquare G61 from a wastewater treatment
system (Sauder et al., 2017). Ca. N. arcticus Kfb is an ammonia
oxidizer that grows optimally in enrichment cultures at 20–
28◦C with ammonium (NH+

4 ) or urea as substrates, although at
extremely low rates. Intriguingly, indications for faster growth
rates were repeatedly observed at 4◦C (and to a lesser extent
at 8◦C) without detectable ammonia oxidation, although we
could not identify alternative or complementary substrates, or the
metabolism supporting this growth behavior.

MATERIALS AND METHODS

Enrichment and Cultivation of AOA
AOA were enriched and routinely cultivated in 30mL
polystyrene vials containing 16mL Fresh Water Medium
(FWM) (Tourna et al., 2011) and 4mL inoculum [20% (v/v)].
FWM contained NaCl (1 g L−1), MgCl2·6H2O (0.4 g L−1),
CaCl2·2H2O (0.1 g L−1), KH2PO4 (0.2 g L−1) and KCl (0.5 g
L−1), FeNaEDTA solution (7.5µM), 1mL non-chelated trace
element mixture, and 1mL vitamin solution (Tourna et al.,
2011). All cultures were routinely supplemented with NaHCO3

(2mM), streptomycin (100 µg mL−1), and 0.5mM NH4Cl or
1mM urea. Addition of the antibiotics kanamycin, carbenicillin
and ampicillin (100 µg mL−1) was also individually tested
(each in addition to streptomycin), but since they frequently
led to inhibition of ammonia oxidation, further cultures were
only supplemented with streptomycin. Enrichments cultures
were routinely inspected for bacterial contaminants using phase
contrast microscopy and end-point PCR targeting bacterial
16S rRNA genes. Despite continuous efforts, we could not
completely eliminate the bacterial contaminants. All solutions
were prepared with milli-Q water and autoclaved, or filter-
sterilized in the case of heat-sensitive compounds (i.e., vitamins
and FeNaEDTA). The final pH of the default medium ranged
between 7.0 and 7.5; initial attempts to buffer the medium
using HEPES lead to inhibition of ammonia oxidation, and
thus all subsequent cultivation was performed in unbuffered
medium. All enrichment cultures were incubated in the dark,
and ammonia-oxidizing cultures were routinely incubated at
20◦C, the temperature at which ammonia oxidation was most
stable. The default medium and incubation conditions were
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used for cultivation experiments with different supplements and
NH4Cl/urea concentrations, or under different temperatures
or pH, unless otherwise stated. Concentrations of NO−

2 and
NH+

4 were determined photometrically, and cultures were
subcultivated in fresh medium after NO−

2 production ceased.

Measurement of N2O Production in
Enrichment Cultures
Nitrous oxide production was determined in triplicate 20mL
cultures supplemented with 0.5mMNH4Cl, incubated in 120mL
glass serum bottles containing 21% oxygen in the headspace, and
sealed with sterile butyl rubber stoppers and aluminum crimp
caps. One additional vial containing only medium was incubated
in parallel as negative control. Fifteen mL gas samples were
collected at regular intervals, from which 12mL were transferred
into 10mL sealed and evacuated glass vials, and stored at
4◦C until analysis. In order to prevent vacuum formation in
the cultivation vials, the volume of gas removed was replaced
immediately with 15mL filter-sterilized air. Gas analysis was
performed by gas chromatography (AGILENT 6890N, Vienna,
Austria; injector: 120◦C, detector: 350◦C, oven: 35◦C, carrier gas:
N2) connected to an automatic sample-injection system (DANI
HSS 86.50, Headspace-Sampler, Sprockhövel, Germany). Nitrous
oxide concentrations were determined with a 63Ni-electron-
capture detector. Standard gases (Inc. Linde Gas, Vienna,
Austria) contained 0.5, 1, and 2.5 µL/L N2O. A glass vial
containing sterilized air was measured as control at each of
five time-points.

Scanning Electron Microscopy and
DOPE-FISH Analyses
Cells for scanning electron microscopy were harvested from
2mL of culture in late exponential NO−

2 production phase by
centrifugation at 10,000 g and 4◦C for 10min, and processed as
previously described (Abby et al., 2018) with slight modifications.
Briefly, cells were resuspended in 1mL 0.5% glutaraldehyde in
0.02mM sodium cacodylate and incubated for 1 h, after which
glutaraldehyde concentration was increased to 2.5% for 2 h. Fixed
cells were washed three times in 0.02mM sodium cacodylate and
spotted onto 0.01%-poly-L-lysine coated glass slides (5mm) and
allowed to sediment for 15min. Samples were dehydrated using
a graduated ethanol series (30–100%, 15min each) and dried
by critical point drying (Leica EM CPD300). The slides were
subsequently placed on conductive stubs, gold coated for 30 s
(JEOL JFC-2300HR) and analyzed (JEOL JSM-IT200).

Cells for Doubly-labeled Oligonucleotide Probe Fluorescence
in situ Hybridization (FISH) (Stoecker et al., 2010) were
harvested from 2mL culture by centrifugation at 4◦C and
16,000 g for 40min, and then washed in PBS-buffer and fixed
with 4% paraformaldehyde for 3 h using standard protocols
(Amann et al., 1990). Cells were washed two times with 1mL
PBS and finally resuspended in 200 µL of 1:1 PBS:ethanol mix
before storage at−20◦C. After dehydration in ethanol, cells were
hybridized overnight in hybridization buffer containing 20%
formamide using doubly-labeled probes Eub338 (Fluos) 5′-GCT

GCC TCC CGT AGG AGT-3′ and Arch915 (dCy3) 5′-GTG CTC
CCC CGC CAA TTC CT-3′.

DNA Extraction
DNA for quantitative PCR (qPCR) and cloning PCR was
extracted from cells collected from 1 to 2mL culture by
centrifugation at 4◦C and 13,400 rpm for 30min. DNA
was extracted using a modified version of the protocol by
Griffiths et al. (2000) and Urich et al. (2008), as follows:
cells were resuspended in pre-warmed (65◦C) 1% sodium
dodecyl sulfate (SDS) extraction buffer and transferred to Lysing
Matrix E tubes (MP Biomedicals) containing an equal volume
of phenol/chloroform/isoamylalcohol (25:24:1). Cell lysis was
performed in a FastPrep-24 (MP) device with speed setting 4 for
30 s, and the lysate was centrifuged at 13,400 rpm for 10min. An
equal volume of chloroform/isoamylalcohol (24:1) was added to
the supernatant of the lysate, followed by centrifugation at 13,400
rpm for 10min and collection of the aqueous phase. Nucleic
acids were precipitated with an equal volume of isopropanol
with addition of 40 µL NaCl 5M and 1 µL glycogen (20mg
mL−1) as carrier, incubated for 1 h at room temperature.
Following centrifugation at 13,400 rpm for 1 h, nucleic acid
pellets were washed with 1mL cold 70% ethanol, dried at 30◦C
using a SpeedVac centrifuge, eluted in nuclease-free water and
stored at −20◦C until analysis. Nucleic acid quantification for
metagenome sequencing was performed with a QubitTM 2.0
Fluorometer (Invitrogen) using the dsDNA HS Assay Kit.

Quantitative PCR
Archaeal 16S rRNA genes were quantified in triplicate 20
µL reactions containing 10 µL GoTaq R© qPCR Master Mix
2x (Promega), 0.2mg mL−1 BSA, 0.8µM of each primer
Cren-771F (5′-ACGGTGAGGGATGAAAGCT-3′) and Cren-
957R (5′-CGGCGTTGACTCCAATTG-3′) (Ochsenreiter et al.,
2003), and 2 µL DNA template. Amplification was performed
with the following cycling conditions: 95◦C for 10min,
followed by 40 cycles of 15 s denaturing at 95◦C, 30 s joint
annealing-extension at 54◦C, extension at 60◦C for 30 s, and
fluorescence measurement at 78◦C for 10 s. Standard dilutions
were prepared in duplicates or triplicates ranging from 10
to 108 gene copies µL−1 using long gene fragments from
N. viennensis EN76 amplified with primers A109F (Großkopf
et al., 1998) and A1492R (Nicol et al., 2008). The efficiency
of qPCR assays ranged between 80 and 99% with R2 ≥ 0.99.
Archaeal amoA genes were quantified in 20 µL reactions
containing 10 µL GoTaq R© qPCR Master Mix 2x (Promega),
0.2mg mL-1 BSA, 2 µL DNA template, and 1µM of each
of the primers CamoA-19F (5′-ATGGTCTGGYTWAGACG-
3′) (Tourna et al., 2008; Pester et al., 2012) and the new
primer TamoA-629R (5′-TGGCANTAYMGATGGATGGC-3′)
(Arce et al., 2018), which was designed for improved coverage
of archaeal amoA genes, particularly from Ca. Nitrosocosmicus
spp. Amplification was performed using the following cycling
conditions: 95◦C for 10min, followed by 40 cycles of 15 s
denaturing at 95◦C, 34 s joint annealing-extension at 58◦C,
extension at 60◦C for 45 s, and fluorescence measurement at
78◦C for 10 s. Standard dilutions were prepared in duplicates
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or triplicates ranging from 10 to 108 gene copies µL−1 using
genomic fragments containing the amoA gene of Nitrososphaera
viennensis EN76 amplified with the new primers NV-LamoA-F
(5′-CGCATGATCGGCCGCAGAGT-3′) and NV-LamoA-R (5′-
GCCTAGTAGCGACCCGCCCT-3′), designed here specifically
for N. viennensis EN76. The efficiency of qPCR assays ranged
between 92 and 95%, with R2 ≥ 0.99. Bacterial 16S rRNA
genes were quantified in 20 µL reactions containing 10 µL Sybr
green Mix 2x (Qiagen), 0.2mg mL−1 BSA, 0.5µM of each of
the primers P2 (5′-ATTACCGCGGCTGCTGG-3′) and P3 (5′-
CCTACGGGAGGCAGCAG-3′) (Muyzer et al., 1993) and 2 µL
DNA template. Amplification was performed with the following
cycling conditions: 95◦C for 15min, followed by 40 cycles of
15 s denaturing at 95◦C, 45 s joint annealing-extension at 45◦C,
and extension with fluorescence measurement at 72◦C for 40
sec. Standard dilutions were prepared in duplicates or triplicates
ranging from 10 to 108 gene copies µL−1 using long gene
fragments from Nitrosospira multiformis ATCC25196 amplified
with primers Eubac27F and 1492R (Lane, 1991). The efficiency
of all qPCR assays ranged between 98 and 100%, with R2 ≥ 0.99.
Quantitative PCR assays were performed in a Mastercycler R©

ep gradient S realplex2 (Eppendorf AG), and the specificity of
amplification products was confirmed by melting curve analysis
and agarose gel electrophoresis.

Archaeal amoA Gene Cloning and
Sequencing
PCR amplification of archaeal amoA gene fragments (595
bp excluding primers) was performed in 50 µL reactions
containing: 1.25U of GoTaq R© Flexi DNA Polymerase, 1
x Green GoTaq R© Flexi Buffer (Promega, Madison, WI,
USA), 2mM MgCl2, 0.2mM dNTPs and 1µM of each
primer CamoA-19F (5′-ATGGTCTGGYTWAGACG-3′)
(Tourna et al., 2008; Pester et al., 2012) and TamoA-629R
(5′-TGGCANTAYMGATGGATGGC-3′) (Arce et al., 2018).
Thermal conditions were as follows: 5min initial denaturing
step at 95◦C, followed by 35 cycles of 45 s denaturing at 95◦C,
45 s annealing at 58◦C and 45 s extension at 72◦C, with a
final extension step of 10min at 72◦C. Pooled triplicate PCR
products were column-purified with the NucleoSpin R© Extract
II kit (Macherey-Nagel GmbH & Co. KG, Düren, Germany)
according to the manufacturer’s protocol and cloned in TOP10
chemically competent Escherichia coli cells using the TOPO TA
Cloning R© Kit for Sequencing (Invitrogen, Carlsbad, CA, USA).
Clones were selected for sequencing after confirmation of the
correct insert size by M13 colony-PCR and visualization on
agarose gel electrophoresis. Plasmid extractions and sequencing
of cloned sequences were processed by LGC Genomics (Berlin,
Germany). Gene sequences have been deposited in GenBank
under accession numbers MK978748–MK978767.

16S rRNA Gene Amplicon Sequencing and
Analysis
PCR amplicons of 16S rRNA genes were obtained using primers
519F (5′-CAGCMGCCGCGGTAA-3′) (Burggraf et al., 1997)
and 805R (5′-GACTACNVGGGTWTCTAAT-3′) (Apprill et al.,

2015), which amplify both archaeal and bacterial genes. PCR
amplicons were sequenced with Illumina MiSeq Paired-End
sequencing (2x300 bp) at the Vienna BioCenter Core Facilities,
Vienna. Data analysis was performed with QIIME2 (Caporaso
et al., 2010). Adaptor sequences were first trimmed from reads
using CUTADAPT (Martin, 2011) and then processed using the
DADA2 pipeline (Callahan et al., 2016). Amplicon Sequence
Variants (ASVs) were classified using VSEARCH (Rognes et al.,
2016) with a custom-modified Silva v132 database.

Genome Sequencing and Assembly
Sequencing reads were generated using two sequencing
technologies: Illumina HiSeq 2500 generating 150 bp read
pairs with a paired-end library with 900 bp insert size (VBCF
sequencing facility, Vienna); and IonTorrent PGM 2015 with
Chip 318C and 400 bp chemistry. DNA for Illumina sequencing
was extracted from 41.5mL culture (two pooled replicate
cultures) and 1.3 µg were used for library preparation. DNA
for IonTorrent sequencing was extracted from 150mL culture
(three pooled replicate cultures), and 196 ng were used for
library preparation. In total, we obtained >50M read pairs
through Illumina sequencing and 5.5M reads with IonTorrent.
Reads were filtered by quality and length, and low complexity
regions were removed. Illumina reads were filtered using
Prinseq 0.20.4 (minimum length: 90, minimum quality: 28)
(Schmieder and Edwards, 2011, RRID:SCR_005454). Filtering of
IonTorrent reads (minimum length: 80, maximum length: 400
bp, minimum quality: 20) was performed using cutadapt 1.12
(Martin, 2011, RRID:SCR_011841). After filtering, we obtained
40M read pairs from the Illumina dataset and 4.6M reads
from the IonTorrent dataset. All filtered reads were assembled
using SPAdes 3.7 using kmer sizes from 11 to 105 by steps of 2
(Bankevich et al., 2012; RRID:SCR_000131). The filtered reads
from both Illumina and IonTorrent were separately mapped onto
the metagenomic assembly using NextGenMap 0.5.2 (Sedlazeck
et al., 2013, RRID:SCR_005488). The read coverage of the SPAdes
assembly was calculated with SAMtools 1.3.1 (Li et al., 2009,
RRID:SCR_002105) for both IonTorrent and Illumina datasets.
We then used the differential coverage binning approach
(Albertsen et al., 2013) by plotting the coverages obtained
using both sets of reads against each other, and using the %
GC (Figure S5). Twenty-two scaffolds (27 contigs) above 5 kb
were selected as belonging to the genome of Ca. N. arcticus Kfb.
Five additional metagenomic bins were assigned to five distinct
bacterial contaminants (Table S1). The genome sequence of Ca.
N. arcticus Kfb has been deposited in NCBI under BioProject
PRJNA505990 and BioSample SAMN10440610.

Genome Annotation and Analysis
The 27 contigs were uploaded and annotated automatically using
the Microscope annotation platform from Genoscope (Evry,
France) (Vallenet et al., 2009; Medigue et al., 2017). Further
annotations were obtained as in Kerou et al. (2016a) and Abby
et al. (2018). The average nucleotide identity (ANI) between
the three Ca. Nitrosocosmicus genomes was calculated based on
whole-genome BLAST alignments using the Jspecies web server
(Richter et al., 2016). Families of homologous proteins were built
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for each genome based on the results of a BLASTP run with
the “all proteins against all” option. The results were used as
input for the Silix (Miele et al., 2011) and Hifix (Miele et al.,
2012) programs in order to cluster the sets of similar sequences
into protein families. For sequences to be clustered in the same
Silix family, they had to share at least 30% of identity and the
BLAST alignment cover at least 70% of the two sequence lengths.
We obtained a total of 4487 families of proteins for the Ca.
Nitrosocosmicus genus.

Based on the genome bins from the SPAdes assembly (see
subsection above) protein-coding genes were predicted using
MetaGeneMark (Zhu et al., 2010) and rRNA gene identification
was performed with RNAmmer (parameters -S bac -multi -m
tsu, lsu, ssu) (Lagesen et al., 2007). Bacteria were taxonomically
classified based on 16S and 23S rRNA genes using SILVA-
ACT online (SINA 1.2.12 for ARB SVN revision 21565 accessed
on 2018-07-31, minimum identity to query decreased to 0.6)
(Pruesse et al., 2012), and based on inferred protein sequences
using the Community Edition of MEGAN 6.10.13 (Huson et al.,
2016) with LCA parameter top 5% and accession-to-taxonomy
mapping file prot_acc2tax-Oct2017X1.abin and GenBank’s non-
redundant database (NRDB version 16/11/2017; BLASTP 2.7.1+
with E-value cutoff e-10). For a summary of the results
see Table S1.

RESULTS AND DISCUSSION

Enrichment and Cultivation of AOA From
Arctic Soils
Two initial enrichment cultures of AOA were obtained from
arctic mineral soils from a frost boil in a peatland and
from upland moss tundra in Svalbard, by screening ammonia
oxidation activity in approximately 100 initial cultures inoculated
with diverse arctic soils, as described by Alves et al. (2013). Only
archaeal ammonia oxidizers were detected in these enrichment
cultures, based on analysis of amoA genes using archaea- and
bacteria-specific PCR assays. After ∼3 years of continuous
cultivation, these ammonia-oxidizing cultures were shown to
contain only a single AOA phylotype related to fosmid clone 29i4
(Quaiser et al., 2002), based on amoA and 16S rRNA genes (Alves
et al., 2013), which is now represented by the candidate genus
Nitrosocosmicus (Jung et al., 2016; Lehtovirta-Morley et al.,
2016; Sauder et al., 2017). Therefore, we provisionally name here
the newly enriched strain Candidatus Nitrosocosmicus arcticus
strain Kfb (see detailed taxonomic characterization below).

Continuous subcultivation of AOA enriched from frost boil
soil over more than 5 years in mineral medium supplemented
with antibiotics and NH4Cl or urea led to cultures with near-
stoichiometric conversion of NH+

4 to NO−
2 at 20 and 28◦C

(Figures 1, 2). Ammonia oxidation activity was most stable
at 20◦C, as it tended to decrease or even stop in cultures
continuously grown and subcultivated at 28◦C. Therefore,
most subsequent cultivation experiments were performed at
20◦C. Ammonia oxidation rates were extremely slow in these
cultures, with approximately 0.5mM NH+

4 oxidized only after
approximately 70 days at 20◦C (Figure 1A). Maximal NO−

2
production after supplementation with NH4Cl was observed

with a concentration of 10mM, although only up to 0.9mM
NO−

2 was produced (Figure 1B). Supplementation with urea
led to higher NO−

2 yields: up to 1mM NO−
2 was produced

with addition of 0.5mM urea, and up to 1.9mM NO−
2 with

1mM urea (Figure 1C). When 3mM urea was supplied, only
a negligible amount of NO−

2 was produced, and only until day
50 of incubation. Ammonia oxidation was observed at pH 6–
8 (with urea) at similar rates, although with increasingly longer
lag phases at pH above 6 (up to 125 days at pH 8) (Figure 1D).
Nitrous oxide (N2O) was produced in enrichment cultures of
Ca. N. arcticus Kfb, but at very low concentrations of up
to 0.04µM (Figure 1A), consistent with the low N2O yields
measured in cultures of Nitrososphaera viennensis EN76 and
other AOA (Stieglmeier et al., 2014b; Kozlowski et al., 2016; Hink
et al., 2017a,b). Like in cultures of other AOA, this N2O might
have been mainly produced abiotically from NO leaked during
ammonia oxidation (Kozlowski et al., 2016). Given the presence
of other organisms in the enrichment cultures, the origin and
mechanism of N2O production remains unclear.

Since growth rates with urea supplementation were
suggestively faster and more stable than with NH4Cl, we
used it as the substrate to assess ammonia oxidation over a
temperature range of 4–32◦C in parallel cultures, all inoculated
with the same culture grown at 20◦C. Urea was hydrolyzed to
NH+

4 faster with increasing temperature (Figure S1A), although
substantial ammonia consumption and NO−

2 production were
only observed at 20 and 28◦C, and to a much lesser extent at 16◦C
(Figures S1A,B). Different strategies were attempted to increase
ammonia oxidation rates and the enrichment level of Ca. N.
arcticus Kfb, namely through addition of different antibiotics
(kanamycin, carbenicillin and ampicillin), lysozyme treatment,
buffering the medium with HEPES, and supplementation with
small amounts of pyruvate (0.5mM). However, none of these
strategies yielded faster ammonia oxidation rates or complete
elimination of contaminant bacteria, with some treatments
actually leading to inhibition of ammonia oxidation (i.e., media
buffering with HEPES, or antibiotics other than streptomycin).
We also observed an extension of the lag phase of ammonia
oxidation when cultures were grown in volumes >20mL, or
when cultures had remained in stationary NO−

2 production
phase for long periods before re-inoculation into fresh medium.

Based on analysis of 16S rRNA gene amplicons, Ca. N.
arcticus Kfb has been enriched to between 72 and 93%
of all organisms in the current enrichment cultures as of
November 2018. All other organisms in the cultures represented
uncultured bacterial strains, which, individually, comprised less
than 10% of the community. Bacterial contaminants were
affiliated with the generaDevosia and Bradyrhizobium (both class
Alphaproteobacteria), Acidimicrobium (phylum Actinobacteria),
and Phycisphaera (phylum Planctomycetes) (see Figure S5 and
Table S1 for their corresponding genome bins).

Ammonia Oxidation-Independent Growth
of Ca. N. arcticus Kfb at Low Temperatures
Growth of Ca. N. arcticus Kfb, and initially possibly also other
very closely-related AOA, was observed in several independent
early enrichment cultures without concomitant oxidation of
ammonia to NO−

2 , but exclusively at 4 or 8◦C, based on
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FIGURE 1 | Enrichment cultures of Ca. N. arcticus Kfb grown at 20◦C under different conditions. (A) Cumulative net NH+
4 consumption, and net NO−

2 and N2O

production in triplicate cultures. Error bars represent standard deviations. (B–D) Cumulative net NO−
2 production in enrichment cultures of Ca. N. arcticus Kfb under

(B) different initial NH+
4 concentrations (black and gray lines represent cultures deriving from two distinct inocula, respectively), (C) different initial urea concentrations,

and (D) different initial pH.

FIGURE 2 | Growth of Ca. N. arcticus Kfb with or without nitrite production in enrichment cultures at (A) 4◦C, (B) 20◦C, or (C) 28◦C. Cultures were grown in mineral

medium supplemented with 1mM urea. Growth was determined based on quantification of archaeal amoA gene copies with qPCR (gray bars). Solid and dotted lines

represent cumulative net NO−
2 production and net NH+

4 release and consumption, respectively. (A) shows two replicate cultures with active growth but no NO−
2

production; the third replicate culture is not shown, as neither growth nor NO−
2 production were detected. Error bars in (B,C) represent the standard deviation of

triplicate cultures; error bars in (A) represent triplicate qPCR reactions. Some error bars are smaller than the symbols and thus are not visible.
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quantification of amoA and 16S rRNA genes. This behavior
was reproduced in multiple cultures deriving from different
cultivation lineages and at different enrichment stages, but
originating from the same initial inoculum as the nitrifying
culture of Ca.N. arcticus Kfb. However, this growth behavior was
not consistent between all replicate incubations, nor in terms of
incubation period and growth rates.

In an initial experiment we observed growth of AOA in
two early enrichment cultures at 4◦C based on comparable
increases in both amoA and 16S rRNA gene copies, but without
detectable NO−

2 production or NH+
4 consumption (Figure S2).

These cultures derived from the same soil where Ca. N. arcticus
Kfb was enriched from, and, consistently, at least one of them
was dominated by Ca. N. arcticus Kfb-like organisms (i.e.,
nearly identical amoA genes) (see Supplementary Material for
detailed results).

In order to confirm these observations, we investigated the
ammonia oxidation-independent growth behavior over shorter
time periods and compared it directly with growth associated
with ammonia oxidation, by measuring growth of Ca.N. arcticus
Kfb (based on amoA gene quantification) in triplicate cultures at
4, 8, 20, or 28◦C supplemented only with 1mM urea. All cultures
were inoculated with the same ammonia-oxidizing culture grown
continuously for several years at 20◦C and supplemented only
with urea. This culture derived directly from the same cultures
from which the genome of Ca. N. arcticus Kfb was sequenced
(see section below). Growth of Ca. N. arcticus Kfb was again
detected in two out of three replicate cultures incubated at 4◦C,
and, consistent with previous observations, without detectable
net NO−

2 production (Figure 2A). Cell numbers, inferred from
amoA gene abundance, decreased drastically within the first 10
days of incubation, in contrast to ammonia-oxidizing cultures
incubated at 20 or 28◦C (Figures 2B,C). This possibly reflected
an adaptive physiological and/or population response to the
temperature shock, from 20◦C in the culture used as inoculum to
4◦C in this incubation. Cell numbers remained low but stable for
50 to 60 days, and were followed by a burst of growth within only
10 days, which far surpassed that observed in ammonia-oxidizing
cultures throughout their whole incubation period. This period
of fast growth was shifted by approximately 10 days between the
two replicate cultures, possible as a result of different population
dynamics during the temperature adjustment period. Like in
cultures at 20 or 28◦C, population sizes declined after reaching
the abundance peak, although more abruptly. In contrast to
cultures at 4◦C, changes in amoA gene abundance between
days 30, 50, and 70 in all replicate cultures incubated at 8◦C
(Figure S3) suggested only very limited growth, which was
accompanied by production of small amounts of NO−

2 and thus
could have been driven by ammonia oxidation.

Despite the limited reproducibility within individual
experiments (i.e., among replicate cultures), growth of Ca. N.
arcticus Kfb was repeatedly observed in the absence of detectable
net oxidation of ammonia. This strongly suggests that this
organism is able to conserve energy through an alternative
metabolism(s), at least at 4◦C. Although we could not identify
potential alternative reductants, these results indicate that
ammonia oxidation-independent growth did not depend on

compounds present in the original soil, given that this behavior
could be restored in cultures continuously transferred in
artificial medium for several years. Since no exogenous organic
compounds were added to the medium (only urea, vitamins,
sodium bicarbonate, inorganic salts, chelated iron, and trace
elements), growth likely depended on biomass recycling and/or
interactions with other organisms or metabolites present in the
enrichment cultures.

Such strategies and metabolic versatility—i.e., mixotrophy,
facultative autotrophy, and utilization of both organic and
inorganic electron donors—are common and widespread among
microorganisms, as for example in Nitrospira (Watson et al.,
1986; Gruber-Dorninger et al., 2015; Koch et al., 2015),
Thiobacillus (Smith et al., 1980), and diverse hydrogen oxidizers
(Piché-Choquette and Constant, 2019), such as Pseudomonas
(Kiessling and Meyer, 1982), Thermomicrobium (Islam et al.,
2019), and Mycobacterium (Greening et al., 2014).

Growth Uncoupled From Ammonia
Oxidation at Higher Temperatures
Remarkably, amoA gene quantification in ammonia-oxidizing
cultures at 20 and 28◦C revealed that growth of Ca. N.
arcticus Kfb does not completely parallel ammonia oxidation
dynamics, with most NO−

2 being produced before and after
the periods of fastest cell growth (Figures 2B,C). In cultures
at 20◦C, NO−

2 concentrations increased almost linearly from
day 10 to day 120 of incubation, except for a near-stationary
NO−

2 production period between days 20 and 30 that coincided
with the greatest increase in cell numbers (inferred from amoA
gene abundance), and was followed by less pronounced growth
between days 30 and 50 (Figure 2B). In cultures at 28◦C,
NO−

2 concentrations increased nearly exponentially from the
beginning of incubation until day 50, and continued increasing
at lower rates until day 100, although a substantial increase
in cell numbers was only observed from day 30 to day 40
(Figure 2C). At both temperatures, approximately half of all
NO−

2 was produced during the later incubation period alone
(∼50% of NO−

2 at 20◦C and ∼40% at 28◦C), when cell numbers
remained constant or even declined (Figures 2B,C). The growth
behavior of Ca. N. arcticus Kfb in ammonia oxidizing cultures
contrasts with that of other cultivated AOA, including other
Ca. Nitrosocosmicus strains, which showed a tight correlation
between NO−

2 production and growth (e.g., Tourna et al.,
2011; Jung et al., 2016; Lehtovirta-Morley et al., 2016; Sauder
et al., 2017). This apparent decoupling of growth and nitrite
production also under temperatures at which ammonia oxidation
was optimal further supports that Ca. N. arcticus Kfb is able to
sustain growth through an alternative energy metabolism(s).

Morphology
Ca. N. arcticus Kfb was identified as coccoid-shaped cells of
approximately 1µm in diameter, based on FISH using archaea-
specific dually labeled probes (DOPE-FISH). Figure 3 shows cells
from an enrichment culture at late exponential NO−

2 production
phase at 20◦C (Figure 1A), where rod-shaped morphotypes
were identified as bacteria (Figure S4). Ca. N. arcticus Kfb cells
were found mainly in suspended aggregates typically comprising
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FIGURE 3 | Micrographs of Ca. N. arcticus Kfb in enrichment cultures at 20◦C. (A) DOPE-FISH micrograph using the archaea-specific probe ARCH 915, showing

typical Ca. N. arcticus Kfb cell aggregates and occasional single cells. The scale bar represents 10µm. (B) Scanning electron micrograph of a cell aggregate. Cells

have an average diameter of 0.8µm (ranging from 0.6 to 1.0µm). The scale bar represents 1µm.

10–20 cells, but often several more (Figures 3A,B and Figure S4).
As observed by scanning electron microscopy, Ca. N. arcticus
Kfb cells are irregular cocci with an average diameter of 0.83µm
(standard deviation = 79 nm, range = 601–1070 nm, n = 115),
which is slightly smaller than those of Ca. N. oleophilus MY3
(1.1µm) (Jung et al., 2016), Ca. N. exaquare G61 (1.3µm)
(Sauder et al., 2017), and Ca. N. franklandus C13 (0.96µm)
(Lehtovirta-Morley et al., 2016) (Figure 3B and Table 1). Ca.
N. arcticus did not exhibit the ridged walnut-like appearance
observed in the closely related Ca.N. oleophilus MY3 (Jung et al.,
2016), but had rather a relatively smooth spherical morphology
more similar to that of Ca. N. exaquare G61. Nevertheless,
these morphological differences could have resulted from the
different cell fixation procedures in those studies, namely usage
of PBS (phosphate-buffered Saline; 290 mOsm) and higher
glutaraldehyde concentrations, which possibly caused extreme
osmotic stress, loss of turgidity and lower hydration, leading
to a wrinkled or collapsed cell appearance (Jung et al., 2016;
Lehtovirta-Morley et al., 2016). Although Ca. N. arcticus Kfb
occurred either as single cells or in clusters of varying size, like
other Ca. Nitrosocosmicus strains (Figure 3A and Figure S4),
cells were not covered by an apparent extracellularmatrix, similar
to that observed in cell clusters of Ca. N. exaquare G61 and Ca.
N. oleophilus MY3 (Jung et al., 2016; Sauder et al., 2017).

The typical formation of large cell aggregates indicates that
Ca. N. arcticus Kfb, like other Ca. Nitrosocosmicus strains, is
able to form biofilm-like structures, which is also supported
by the presence of genes encoding exopolymeric substances
(EPS) in the genomes of all Ca. Nitrosocosmicus strains (see
also genome analyses), as well as observed formation of a
putative extracellular matrix by Ca. N. oleophilus MY3 and
Ca. N. exaquare G61 (Jung et al., 2016; Sauder et al., 2017).
Moreover, cell aggregates of Ca. N. arcticus Kfb were resistant to
sonication, indicating that these associations are very stable and
occur naturally rather than resulting from technical artifacts, and
thus might have an important role in the organism’s physiology
and life-style.

Taxonomy and Environmental Distribution
The 16S rRNA gene of Ca. N. arcticus Kfb shares 100%, 99.7%,
and 99.3% sequence identity with those ofCa.N. oleophilusMY3,
Ca. N. exaquare G61, and Ca. N. franklandus C13, respectively,
whereas its amoA gene shares 96.7% sequence identity with that
of Ca. N. oleophilus MY3 and 91% with both later strains (all
comparisons are based on full-length genes, except those with
Ca. N. franklandus C13, for which only near-full length gene
fragments are available). Despite harboring identical 16S rRNA
genes, the genomes of Ca. N arcticus Kfb and Ca. N. oleophilus
MY3 are surprisingly divergent and share only 83% average
nucleotide identity (ANI) (Konstantinidis et al., 2006) over the
64% fraction of Ca.N arcticus Kfb’s genome that could be aligned
(see Methods and genome analysis below). The ANI between
the genomes of Ca. N. arcticus Kfb and Ca. N. exaquare G61 is
73%, based on 47% of the genome aligned. These ANI values are
well below the threshold of<94% proposed to represent different
species (Goris et al., 2007; Richter and Rossello-Mora, 2009),
thus supporting the proposal of Candidatus Nitrosocosmicus
arcticus strain Kfb as a new species within the candidate genus
Nitrosocosmicus. The main characteristics of Ca. N. arcticus
Kfb compared to other currently cultivated Ca. Nitrosocosmicus
strains are summarized in Table 1. The highly conserved 16S
rRNA gene sequences (100% similarity between Ca. N. arcticus
and N. oleophilus MY3) but large differences in their genomes
(see below) and habitats indicate that Ca. Nitrosocosmicus
strains appear to evolve fast and experience unusually frequent
horizontal gene transfer.

Based on a recent global phylogeny-guided taxonomy of
archaeal amoA genes by Alves et al. (2018) the candidate
genus Nitrosocosmicus represents AOA clade NS-ζ (NS-Zeta)
within the order-level lineage NS (i.e., order Nitrososphaerales)
(Figure 4A), which was previously referred to as “Nitrososphaera-
sister cluster” (Pester et al., 2012). Ca. N arcticus Kfb is
specifically associated with one of several basal OTUs within
clade NS-ζ, which also includes the two major subclades NS-
ζ-1 (without cultivated organisms), and NS-ζ-2, represented by
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TABLE 1 | Characteristics of Ca. N. arcticus Kfb and other cultivated members of candidate genus Nitrosocosmicus.

Organism Source Status Avg. size

(µm)

Growth

temp.

optimum

(range)

(◦C)

pH

optimum

(range)

Maximum

specific

growth rate

(µmax, h−1)

Specific

NO−

2 prod.

rate (fmol

NO−

2 cell−1

h−1)

Specific

NO−

2 prod.

rate at

µmax (fmol

NO−

2 cell−1

h−1)

Inhib. NH+

4
conc. (mM)

Stimulation

by organic

compounds

Genome

size (Mb)

DNA G+C

(mol %)

No.

protein-

coding

genes

16S/23S/5S

rRNA gene

copies

GOGAT

subunits

Reference

Ca. N. arcticus

Kfb

Frost boil in arctic

tundra fen (mineral

gleysol)

Enriched 1.0 4 (4–8)a 28

(20–28)b
6 (6–7) 0.028–0.033

(4◦C)

0.004–0.012

(20◦C)

0.002–0.010

(28◦C)

0.09–0.74

(20◦C)d

0.19–0.86

(28◦C)d

−0.07–0.04

(4◦C)e

0.01–0.74

(20◦C)e

0.19–0.61

(28◦C)e

>20 Yeast extract

(suggestive)

2.65i 34.0% 3104 3/3/1 NARC_80135—

NARC_80138

This study

Ca. N. oleophilus

MY3

Hydrocarbon-

contaminated

terrestrial sediment

Pure 1.1 30 (20–35) 6.5–7

(5.5–8.5)

0.013 n. a. n. a. 50 yesf 3.43 34.1% 3725 3/3/1 NMY3_03179—

NMY3_03182

(Jung et al.,

2016)

Ca. N. exaquare

G61

Wastewater

treatment plant

(biofilm)

Enriched 1.3 33 (21–40) 8c n. a. n. a. n. a. 20 yesg,h 2.99 33.9% 3162 2/2/1 – (Sauder et al.,

2017)

Ca. N.

franklandus C13

Agricultural sandy

loam soil

Pure 0.96 40 (30–45) 7 (6–8.5) 0.024 0.58 n. a. >100 n. a. n. a. n. a. n. a. n. a. – (Lehtovirta-

Morley et al.,

2016)

n. a., not available.
aNon-nitrifying.
bNitrifying.
cDefault growth pH; growth range not reported.
dCalculated based on all time periods measured during exponential NO−

2 production.
eAll growth parameters of Ca. N. arcticus Kfb at different temperatures are based on parallel cultures derived from the same inoculum; values were calculated from duplicate cultures at 4◦C (where growth was observed), quadruplicate

cultures at 20◦C, and triplicate cultures at 28◦C.
fStimulated slightly by fructose, glucose, arabinose, peptone, yeast extract, and casamino acids.
gStimulated by malate, succinate, pyruvate, citrate, butyrate, glucose, glycerol, acetate, taurine, and yeast extract.
h Inferred based on NO−

2 production, not actual cell growth or biomass increase.
igenome not closed; 23 contigs.
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FIGURE 4 | Phylogeny and environmental distribution of AOA clade NS-ζ (Zeta), representing the candidate genus Nitrosocosmicus based on amoA genes. (A) Tree

showing the amoA gene diversity within clade NS-ζ and the phylogenetic placement of Ca. N. arcticus Kfb and other cultivated Ca. Nitrosocosmicus species. Only the

order-level amoA lineage NS (Nitrososphaerales) is shown, [adapted from the publicly-available reference phylogeny by Alves et al. (2018)]. Organisms and OTUs not

associated with a specific subclade are classified as a basal NS-ζ OTU (e.g., Ca. N. arcticus Kfb is classified as NS-ζ-OTU2). All branches are highly supported and

OTUs defined at 96% sequence identity (Alves et al., 2018). (B) Global environmental distribution of clade NS-ζ based on 364 amoA genes in the curated database

(Alves et al., 2018). Sequences from polar, boreal and alpine soils and from cold springs were further categorized here.

Ca. N. exaquare G61 and Ca. N. franklandus C13 (Figure 4A
and Figure S6).

Based on environmental studies of amoA genes, clade NS-ζ
has been found mainly in soils, although it is also particularly
frequent in wastewater treatment plants (Figure 4B; Alves et al.,
2018). Additionally, it has also been detected, albeit to less extent,
in compost, estuarine and coastal sediments, salt lakes and also in
both hot and cold terrestrial springs.

Genome Analyses and Metabolic
Predictions
The genome of Ca. N. arcticus Kfb was assembled from
enrichment culture using a whole-genome shotgun sequencing
approach with both Illumina HiSeq and IonTorrent methods (see
Methods). The 2.7Mb genome has an estimated completeness
of 98%, comprising 22 genomic scaffolds (27 contigs), based
on analysis of 145 lineage-specific marker genes (which yielded
98% and 99% genome completeness for the other two Ca.

Nitrosocosmicus strains as well). Based on the high coverage
of the rRNA gene regions in our assembly, Ca. N. arcticus
Kfb appears to encode three rRNA gene operons, similar to
other Ca. Nitrosocosmicus strains (Table 1). However, 16S and
23S rRNA gene coding sequences were located in individual
contigs, and thus we were unable to confirm the occurrence of
multiple rRNA operons within the genome context. Interestingly,
none of the other Thaumarchaeota or archaea of the TACK
superphylum have more than one rRNA operon. Multiple rRNA
operons have been associated with higher growth rates and
faster response to environmental changes, including resource
availability (Klappenbach et al., 2000; Roller et al., 2016), which
may reflect fundamental physiological differences between Ca.
Nitrosocosmicus spp. and other AOA characterized to date.

Ca. N. arcticus Kfb has the full gene sets encoding
the ammonia-monooxygenase (AMO), urease and the
3-hydroxypropionate/4-hydroxy-butyrate pathway for carbon
fixation, characteristic of all studied AOA (see annotations,
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FIGURE 5 | Genomic comparison of strains from candidate genus

Nitrosocosmicus. The Venn diagram shows the distribution of homologous

protein families among the three Ca. Nitrosocosmicus genomes available, as

well as their genome sizes (see text for details).

Table S2). In order to compare the protein-coding gene
complements of the three Ca. Nitrosocosmicus genomes
available, we determined families of homologous genes based
on protein sequence comparison (see Methods for details) and
assessed their distribution among the three genomes (Figure 5).
Ca. N. arcticus Kfb has the smallest genome within the genus
and encodes 638 strain-specific homologous protein families
(26% of its families), whereas Ca. N. oleophilus MY3 and Ca. N.
exaquare G61 each encode 34% and 30% strain-specific protein
families, respectively, proportional to their larger genomes. As
expected from their phylogenetic relationships (Figure 4A and
Figure S6), Ca.N. arcticus Kfb shares more protein families with
Ca. N. oleophilus MY3 than with Ca. N. exaquare G61 (177 vs.
68 protein families, respectively). The protein coding density of
Ca. N. arcticus Kfb genome is approximately 75%, whereas those
of Ca. N. oleophilus MY3 and Ca. N. exaquare G61 are 74% and
77%, respectively. Collectively, Ca. Nitrosocosmicus genomes
have the lowest coding density among AOA [e.g., 86% for N.
viennensis EN76, and 92% for N. maritimus SCM1; data from
Microscope (Medigue et al., 2017)].

The presence of a full 3-hydroxypropionate/4-
hydroxybutyrate carbon fixation pathway and all genes for
gluconeogenesis indicates that Ca. N. arcticus Kfb is in principle
capable of autotrophic growth like other AOA strains (Könneke
et al., 2014; Kerou et al., 2016b). The organism can also
produce polyhydroxyalcanoates as carbon storage compounds
(Poli et al., 2011) and compatible solutes (mannosylglycerate)
(Empadinhas and da Costa, 2008), like several other AOA.
Ca. N. arcticus Kfb also encodes two carbonic anhydrases,
enabling it to interconvert between bicarbonate and CO2

(Ferry, 2010), as found in several other marine and terrestrial
lineages of AOA. The genome encodes six members of the
glucose/sorbosone dehydrogenase family proteins (PF07995,
arCOG02796), a protein family generally expanded among Ca.
Nitrosocosmicus spp. in comparison to other AOA (9–17 found
in Ca. Nitrosocosmicus spp. vs. 3–6 in Nitrososphaera spp. vs.
2–3 in Nitrosopumilales spp.). These periplasmic or membrane
bound pyrroloquinoline quinone (PQQ)-dependent proteins are
known to oxidize aldose sugars into their corresponding lactones
by simultaneously reducing a variety of electron acceptors, such
as cupredoxins or quinones (Toyama et al., 2004), and thereby
contributing reducing equivalents to the respiratory chain
(Figure 6). A more thorough characterization of this expanded
family of dehydrogenases in Ca. N. arcticus Kfb and related
strains might provide clues regarding their peculiar growth
behavior independent of ammonia oxidation. For instance,
potential growth substrates (e.g., sugars, alcohols, organic acids)
could derive from cellular components or metabolites produced
during growth and population turnover of the various organisms
in the enrichment cultures. In addition, Ca. N. arcticus Kfb
and all currently analyzed Ca. Nitrosocosmicus strains encode
putative beta-1,2-mannosidases (CAZy family GH130), which
are enzymes involved in the degradation of mannans originating
from plant cell walls (Cuskin et al., 2015; Nelkner et al., 2019).
The resulting sugars could either serve as substrates for the
PQQ-dependent glucose/sorbosone dehydrogenases or be
further transported into the cell by a yet-unidentified sugar
transporter and enter the central carbon metabolism (even
though it is yet unclear if AOA can perform glycolysis).

Uniquely among currently analyzed genomes of
thaumarchaea, all Ca. Nitrosocosmicus strains encode the
full gene set for molybdenum cofactor (Moco) biosynthesis
(Mendel and Leimkühler, 2015) and a putative ABC type
molybdate/tungstate transporter (Hagen, 2011). All Ca.
Nitrosocosmicus strains also encode two copies of a periplasmic
DMSO/TMAO reductase protein superfamily (arCOG00266),
one of which is adjacent to the Moco biosynthesis gene cluster.
The substrate of the thaumarchaeal homologs is unknown, but
given their taxonomic distribution (highest abundance and
diversity in environmental bacteria) and roles of characterized
members of this superfamily, they could be involved in energy
metabolism or in detoxification processes (Leimkühler and
Iobbi-Nivol, 2016). It is noteworthy that two of the characterized
Ca. Nitrosocosmicus species were isolated from contaminated
environments (i.e., coal-tar contaminated sediments, and
wastewater), where also the highest diversity of DMSO/TMAO
reductases has been found (Leimkühler and Iobbi-Nivol, 2016).

Surprisingly, Ca. N. arcticus Kfb encodes the four subunits
of the archaeal type of glutamate synthase (GOGAT), which are
also present in the closely-related Ca. N. oleophilus MY3 but
not in Ca. N. exaquare G61 or other AOA. GOGAT catalyzes
the NADPH-dependent formation of two glutamate molecules
from glutamine and 2-oxoglutarate, which, together with the
ATP-dependent glutamine synthetase (GS), constitutes a high-
affinity and energy-consuming ammonia assimilation pathway
that functions under low ammonia concentrations, when the cell
is not limited for energy and carbon (Helling, 1994) (Figure 6).
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FIGURE 6 | Reconstruction of the putative energy metabolism and primary nitrogen assimilation pathways in Ca. N. arcticus Kfb. The ammonia oxidation pathway

representation was adapted from Kozlowski et al. (2016), Abbreviations: AMO, ammonia monooxygenase; Amt, ammonium transporter family; GDH, glutamate

dehydrogenase; GOGAT, glutamate synthase; GS, glutamine synthetase; HURM, putative hydroxylamine:ubiquinone redox module; NirK, Cu-containing nitrite

reductase; pcy, plastocyanin; pmf, proton-motive force; PQQ GDH, PQQ-dependent glucose/sorbosone dehydrogenase; Q/QH2, quinone/quinol pool; Ure, urease

holoenzyme; UT, urea transporter family; SSS, solute:sodium symporter family.

This may provide further evidence that Ca. Nitrosocosmicus
spp. have an alternative or auxiliary energy metabolism, possibly
more efficient than ammonia oxidation, allowing them to invest
energy on ammonia assimilation under favorable environmental
conditions. Conversely, the absence of GOGAT in other AOA
implies that they assimilate ammonia primarily via glutamate
dehydrogenase (GDH), a low-affinity enzyme that catalyzes the
reversible reductive amination of 2-oxoglutarate to glutamate.
The dominant view is that this route is active under energy
and carbon limitation, but ammonia excess conditions, because
no ATP is consumed and less carbon is used per ammonia
molecule assimilated (Helling, 1994). This is the dominant
pathway in hyperthermophilic archaea (Robb et al., 2001) and
haloarchaea (Bonete et al., 2008) for assimilation of ammonia
directly supplied in non-limiting growth medium, as opposed
to ammonia originating from amino acid catabolism or nitrate
reduction. Moreover, it has been shown that energy and carbon
limitation stimulate GDH expression in some bacteria even
under nitrogen limiting conditions (van Heeswijk et al., 2013).
These observations may explain its preferential use in all other
AOA that are rather considered to operate under energy limiting
and oligotrophic conditions (Prosser and Nicol, 2012), as this
enzyme provides a direct link, and therefore a convenient point
of regulation, between carbon and nitrogen metabolism.

Ca. Nitrosocosmicus genomes also encode the highest
number of multicopper oxidase family proteins among
thaumarchaea (6–8 vs. 2–5 in all others), with three families
being specific to Ca. N. arcticus Kfb, out of a total of six

in the genome. As observed in other Ca. Nitrosocosmicus
strains, Ca. N. arcticus Kfb encodes a peroxiredoxin and a
Mn-catalase, which confer resistance to reactive oxygen species
and therefore constitute a successful adaptation to an aerobic
terrestrial environment (Jung et al., 2016; Sauder et al., 2017).
Ca. N. arcticus Kfb also encodes an extended repertoire of
genes responsible for acetamidosugar biosynthesis, glycosylation
and extracellular polysaccharide production, similar to Ca. N.
oleophilus MY3 (Jung et al., 2016), which indicates an ability to
form extracellular polymeric substances and biofilms. Among
the protein families specific to Ca. N. arcticus Kfb, we also
found seven families of integrases/recombinases and a putative
provirus, indicating an actively mobile genome.

CONCLUSIONS

Ca. N arcticus Kfb represents the first ammonia oxidizing
archaeon enriched from a terrestrial arctic environment. This
organism grows unusually slow as an ammonia oxidizer,
in comparison to other cultivated AOA strains, suggesting
that current growth conditions in greater potential cultures
are sub-optimal. Nevertheless, apparently faster growth rates,
within the range of other AOA cultivated under ammonia-
oxidizing conditions, have been repeatedly observed at lower
temperatures without detectable NO−

2 production (see Table 1).
These observations indicate that the organism is able to
grow mixotrophically and/or based on a primary energy
metabolism other than ammonia oxidation, probably using
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organic compounds. In line with this hypothesis, we have
identified a number of common features in the genomes
of Ca. N. arcticus and other Nitrosocosmicus strains that
indicate for organotrophic or heterotrophic growth than other
characterized AOA. However, despite numerous attempts, we
could not identify alternative electron donors or acceptors of
Ca. N. arcticus, or the optimal conditions for this potential

alternative metabolism, mainly due to the slow and erratic
growth behavior in culture, as well as the presence of multiple
bacterial contaminants. Growth and/or ammonia oxidation of
at least two of the three other cultivated Ca. Nitrosocosmicus

strains (Ca. N. oleophilus MY3 and Ca. N. exaquare G61)
have indeed been shown to be strongly stimulated by organic
compounds, further suggesting that organisms from this
lineage might be generally able to grow organotrophically or
mixotrophically, by complementing their energy requirements
using alternative reductants.

Interestingly, the apparent alternative growth mode of Ca. N.
arcticus Kfb without ammonia oxidation was most consistently
induced by low temperatures similar to those experienced by
the organism in its natural habitat. Due to very low external
inputs, ammonium bioavailability in arctic soils depends mainly
on mineralization of organic matter, which is severely limited
by chronic low temperatures, despite the often-large amounts of
organic material present. While it is unknown if a temperature-
dependent functional switch can also be induced in other Ca.
Nitrosocosmicus strains, it is tempting to speculate that Ca.
N. arcticus Kfb may have an enhanced alternative or auxiliary
metabolism, in relation to that of the closely-related Ca. N.
oleophilus MY3 (and possibly other AOA), as part of a more
complex adaption to its native cold, low ammonium and highly
organic environment.

Moreover, the growth and ammonia oxidation dynamics
over the temperature range tested suggest that this organism
increasingly depends on ammonia oxidation for growth at
higher temperatures, but possibly as a stress response and/or
backup mechanism to support growth under suboptimal
temperature conditions. Such functional switch by arctic soil
AOA can, in turn, have potentially large implications for
nitrogen cycling in these ecosystems. Our future investigations
will be based on the hypothesis that these AOA populations
are primarily sustained by organotrophic metabolism under the
native low temperatures, but switch increasingly to ammonia
oxidation under higher temperatures, thus fueling higher
nitrification and denitrification rates, and potentially also higher
N2O emissions.

We propose a Candidatus status for the thaumarchaeal strain
cultivated here, with the following taxonomic assignment:

• Class Nitrososphaeria
• Order Nitrososphaerales
• Family Nitrososphaeraceae
• Candidatus Nitrosocosmicus arcticus sp. nov. strain Kfb.

Etymology: L. adj. nitrosus, “full of natron,” here intended
to mean nitrous (nitrite producer); L. masc. n. cosmicus,

cosmopolitan; arcticus (L. masc. gen) describes origin of sample
(arctic soil).

Source: arctic mineral soil from a frost boil in a tundra fen
peatland in Knudsenheia, Svalbard, Norway (Alves et al., 2013).

Description: a facultative ammonia-oxidizing archaeon of the
phylum Thaumarchaeota, able to utilize ammonium and urea as
substrates for ammonia oxidation at temperatures between 16
and 28◦C, at pH ranging from 6 to 7; spherically shaped with a
diameter of 1 µm.

Differentiation relative to closest relative: the 16S rRNA
and amoA genes are 100 and 96.7% identical to those of Ca.
N. oleophilus MY3, respectively. Based on average nucleotide
identity (ANI) between all Ca. Nitrosocosmicus strains (<94%)
and extensive differences in protein-coding gene complement, we
propose a separate species name for strain Kfb.
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